Introduction to JumpStart - Instance Segmentation
This notebook’s CI test result for us-west-2 is as follows. CI test results in other regions can be found at the end of the notebook.
Note: This notebook was tested on ml.t3.medium instance in Amazon SageMaker Studio with Python 3 (Data Science) kernel and in Amazon SageMaker Notebook instance with conda_python3 kernel.
1. Set Up
[ ]:
!pip install sagemaker ipywidgets --upgrade --quiet
Permissions and environment variables
[ ]:
import sagemaker, boto3, json
from sagemaker import get_execution_role
aws_role = get_execution_role()
aws_region = boto3.Session().region_name
sess = sagemaker.Session()
2. Select a pre-trained model
Here, we download jumpstart model_manifest file from the jumpstart s3 bucket, filter-out all the Instance Segmentation models and select a model for inference. ***
[ ]:
from ipywidgets import Dropdown
# download JumpStart model_manifest file.
boto3.client("s3").download_file(
f"jumpstart-cache-prod-{aws_region}", "models_manifest.json", "models_manifest.json"
)
with open("models_manifest.json", "rb") as json_file:
model_list = json.load(json_file)
# filter-out all the Instance Segmentation models from the manifest list.
is_models = []
for model in model_list:
model_id = model["model_id"]
if "-is-" in model_id and model_id not in is_models:
is_models.append(model_id)
print(f"\033[38;5;2mChose a model for inference: \033[0;0m\n")
# display the model-ids in a dropdown to select a model for inference.
model_dropdown = Dropdown(
options=is_models,
value="mxnet-is-mask-rcnn-fpn-resnet101-v1d-coco",
description="",
style={"description_width": "initial"},
layout={"width": "max-content"},
)
display(model_dropdown)
[ ]:
# model_version="*" fetches the latest version of the model
model_id, model_version = model_dropdown.value, "*"
3. Run inference on the pre-trained model
Using JumpStart, we can perform inference on the pre-trained model, even without fine-tuning it first on a new dataset. ***
3.1. Retrieve JumpStart Artifacts & Deploy an Endpoint
We retrieve the deploy_image_uri
, deploy_source_uri
, and base_model_uri
for the pre-trained model. To host the pre-trained base-model, we create an instance of `sagemaker.model.Model
<https://sagemaker.readthedocs.io/en/stable/api/inference/model.html>`__ and deploy it. ***
[ ]:
from sagemaker import image_uris, model_uris, script_uris, hyperparameters
from sagemaker.model import Model
from sagemaker.predictor import Predictor
from sagemaker.utils import name_from_base
endpoint_name = name_from_base(f"jumpstart-example-infer-{model_id}")
inference_instance_type = "ml.p2.xlarge"
# Retrieve the inference docker container uri
deploy_image_uri = image_uris.retrieve(
region=None,
framework=None, # automatically inferred from model_id
image_scope="inference",
model_id=model_id,
model_version=model_version,
instance_type=inference_instance_type,
)
# Retrieve the inference script uri. This includes scripts for model loading, inference handling etc.
deploy_source_uri = script_uris.retrieve(
model_id=model_id, model_version=model_version, script_scope="inference"
)
# Retrieve the base model uri
base_model_uri = model_uris.retrieve(
model_id=model_id, model_version=model_version, model_scope="inference"
)
# Create the SageMaker model instance
model = Model(
image_uri=deploy_image_uri,
source_dir=deploy_source_uri,
model_data=base_model_uri,
entry_point="inference.py", # entry point file in source_dir and present in deploy_source_uri
role=aws_role,
predictor_cls=Predictor,
name=endpoint_name,
)
# deploy the Model. Note that we need to pass Predictor class when we deploy model through Model class,
# for being able to run inference through the sagemaker API.
base_model_predictor = model.deploy(
initial_instance_count=1,
instance_type=inference_instance_type,
predictor_cls=Predictor,
endpoint_name=endpoint_name,
)
### 3.2. Download an example image for inference
We download an example image from the JumpStart assets S3 bucket.
[ ]:
jumpstart_assets_s3_bucket = f"jumpstart-cache-prod-{aws_region}"
pedestrian_img_key_prefix = "inference-notebook-assets"
pedestrian_img = "img_pedestrian.png"
boto3.client("s3").download_file(
jumpstart_assets_s3_bucket, f"{pedestrian_img_key_prefix}/{pedestrian_img}", pedestrian_img
)
3.3. Query endpoint and parse response
[ ]:
import json
def query(model_predictor, image_file_name):
"""Query the model predictor."""
with open(image_file_name, "rb") as file:
input_img_rb = file.read()
query_response = model_predictor.predict(
input_img_rb,
{
"ContentType": "application/x-image",
"Accept": "application/json;verbose;n_predictions=2",
},
)
return query_response
def parse_response(query_response):
"""Parse response and return a set of bounding boxes, masks, class names and scores for predictions along with the original image overlaid with the mask."""
response_dict = json.loads(query_response)
return (
response_dict["ids"],
response_dict["scores"],
response_dict["bboxes"],
response_dict["masks"],
response_dict["labels"],
response_dict["image_with_masks"],
)
[ ]:
query_response = query(base_model_predictor, pedestrian_img)
ids, scores, bboxes, masks, labels, image_with_masks = parse_response(query_response)
### 3.4. Display model predictions
Next, we to plot the boxes on top of image with masks. For this, we adopt a similar function from GluonCV.
[ ]:
def plot_bbox(
img,
bboxes,
scores=None,
labels=None,
thresh=0.5,
class_names=None,
colors=None,
ax=None,
linewidth=3.5,
fontsize=12,
):
"""Plot box over the predicted objects."""
from matplotlib import pyplot as plt
import random
img = img.copy()
ax.imshow(img.astype(np.uint8))
colors = dict()
for i, bbox in enumerate(bboxes):
if scores.flat[i] < thresh or labels.flat[i] < 0:
continue
cls_id = int(labels.flat[i]) if labels is not None else -1
if cls_id not in colors:
if class_names is not None:
colors[cls_id] = plt.get_cmap("hsv")(cls_id / len(class_names))
else:
colors[cls_id] = (random.random(), random.random(), random.random())
xmin, ymin, xmax, ymax = [int(x) for x in bbox]
rect = plt.Rectangle(
(xmin, ymin),
xmax - xmin,
ymax - ymin,
fill=False,
edgecolor=colors[cls_id],
linewidth=linewidth,
)
ax.add_patch(rect)
if class_names is not None and cls_id < len(class_names):
class_name = class_names[cls_id]
else:
class_name = str(cls_id) if cls_id >= 0 else ""
score = "{:.3f}".format(scores.flat[i]) if scores is not None else ""
if class_name or score:
ax.text(
xmin,
ymin - 2,
"{:s} {:s}".format(class_name, score),
bbox=dict(facecolor=colors[cls_id], alpha=0.5),
fontsize=fontsize,
color="white",
)
return ax
[ ]:
from matplotlib import pyplot as plt
import matplotlib.image as mpimg
import numpy as np
ids, scores, bboxes, masks, image_with_masks = (
np.array(ids),
np.array(scores),
np.array(bboxes),
np.array(masks),
np.array(image_with_masks),
)
width, height = image_with_masks.shape[1], image_with_masks.shape[0]
fig = plt.figure(figsize=(20, 20))
ax = fig.add_subplot(1, 1, 1)
ax = plot_bbox(image_with_masks, bboxes, scores, ids, class_names=labels, ax=ax)
plt.show()
3.5. Clean up the endpoint
[ ]:
# Delete the SageMaker endpoint
base_model_predictor.delete_model()
base_model_predictor.delete_endpoint()
Notebook CI Test Results
This notebook was tested in multiple regions. The test results are as follows, except for us-west-2 which is shown at the top of the notebook.